PSIM 模型介绍

超级电容器模型

文档名称:	PSIM 模型介绍-超级电容器模型			
文档编号:		文档版本:	v1.0	
文档类别:	详细技术资料	密级:	公开	

二零二叁年陆月

未经许可 请勿复制全部或者部分文档 ⑥新驱科技 版权所有

目录

1.案例介绍	3
2.系统规格要求	3
2.1.超级电容器模型介绍	3
2.2.超级电容模型工具的使用	5
3.设计步骤	7
3.1.超级电容器建模	7
3.2.仿真分析与验证	9
4.结论	11
5.案例获取	11

1. 案例介绍

超级电容器是一种新型的电化学储能装置,类似于蓄电池而又有一定程度 的差别,能量的存储主要是通过极化电解质,储能过程不仅高度可逆,而且是 物理变化过程,因此既能够反复充电,又不会对电容产生任何影响。超级电容 器具有法拉级的大容量,其功率密度远大于普通电池的功率密度,并且兼具充 放电效率高、绿色环保、无需维护等特点。正是由于这些优点,超级电容器越 来越受到人们的重视,成为未来储能器件的发展方向之一。

PSIM 软件的可再生能源模块提供了超级电容器模型,可以应用于新能源汽车、微电网、电力牵引等领域的应用。该模型与其他适用于仿真中短期(几分钟内)超级电容器充放电过程的模型不同,PSIM中的超级电容器模型可以模拟中长期(数百分钟)的充放电过程。

2. 系统规格要求

2.1. 超级电容器模型介绍

PSIM 中超级电容器模型符号及属性参数如图 1 所示

	参数 颜色		
	超级电容		帮助
			显示
	名称	S1	
	串联单元数目	1	
	并联单元数目	1	
	电容 per Cell	58	
	系数 Kv	1.53	
	电阻 R1	0.0227	
	电容 C1	47.25	
	电阻 R2	41.4	
	电容 C2	2.5	
	电阻 R3	284.4	<u> </u>
	电容 C3	7.2	
	电阻 R4	640	_ _
O	最大电压	15.967	<u> </u>
	初始电压	0	_

图 1 超级电容器模型符号及属性

该模型为行为级子电路模型,模型参数含义如表1所示。

参数	含义
串联电池数量	串联电池的数量。
并联电池数量	并联电池的数量
单元电池容量	每一节电池的容量,单位为法拉(F)。
系数 Kv	反映电容随电压变化的系数 Kv。
电阻 R1	电阻 R1,单位为欧姆(Ω)。
电容 C1	电容 C1,单位为法拉(F)。
电阻 R2	电阻 R2,单位为欧姆(Ω)。
电容 C2	电容 C2,单位为法拉(F)。
电阻 R3	并行电阻 R3,单位为欧姆(Ω)。
电容 C3	电容 C3,单位为法拉(F)。
电阻 R4	电阻 R4,单位为欧姆(Ω)。
最大电压	最大额定电压,单位为伏特(V)。
初始电压	每个电容的初始电容电压,单位为(V)。

表1 超级电容器模型参数含义

参数 Kv、R1、C1、R2、C2、R3、C3、R4 和 Vmax 均是单个单元的参数值。

- 参数 Kv、R1 和 C1 在短期内(以秒为单位)与电容器的响应相关。

- 参数 R2 和 C2 与中期响应相关联(以分钟为单位)。

- 参数 R3 和 C3 与长期响应相关联(在数百分钟内)。

- 参数 R4 与由于自由放电引起的电容器损耗相关联。

实际应用时,需要根据数据手册中的信息,确定模型参数。此外,还需要 对充放电过程中的超级电容器电压进行实验测量。图2所示为电容器电压 Vc 变 化曲线,其中在 0~t3 时段,由恒流 Is 充电,在 t3 时刻,去除充电电流。

4

图 2 超级电容器充放电过程电压波形

根据 0、t2 和 t3 处的充电电流和电容器电压计算参数 Kv、R1 和 C1。参数 R2 和 C2 基于 t3、t5 和 t6 处的电容器电压计算。参数 R3 和 C3 基于 t7、t8 和 t9 处的电容器电压计算。参数 R4 根据数据手册中的泄漏电流计算得出。

请注意,这些参数是针对单个单元的。当多个单元串联或并联时,模型会 自动考虑多单元的配置。

图 2 中突出显示的时间和电压,以及充电电流、泄漏电流和额定电压,所 有这些模型参数都可以通过计算得出。PSIM 提供了一个"超级电容器模型工 具",采用图形界面的方法,可以很方便地计算模型参数。

2.2. 超级电容模型工具的使用

为了方便超级电容器模型的使用, PSIM 提供了一个参数提取工具, 称为 "超级电容器模型工具",用于调整模型参数,进行曲线拟合,使仿真结果与 实验数据很好地吻合。

从 PSIM 菜单栏的"实用工具"菜单中, 启动该工具, 将出现以下窗口:

5

图 3 超级电容器模型工具界面

该工具提供了两种输入实验数据的方法。一种方法是单击"加载数据"按 钮并从文本文件加载实验数据。文本文件格式如下:

Time	Vc
0.1	0.76
0.2	0.78
0.3	0.80

第一行"Time Vc"中的标签是可选的,可以省略。第一个数据点可以不从0开始。如果不是从0开始,工具将自动移动时间,以便第一个点从0开始。 一旦读取数据,工具将自动确定进行曲线拟合所需的9个点,并将其加载到图 形窗口中,并显示为红色的Vc_data数据。

另一种方法是手动指定9个数据点。

除了实验数据外,还需要指定充电电流 Is,额定(或最大)电压 Vrated, 以及漏电流 lleakage。"查找范围…"下的参数定义了曲线拟合计算相关参数。例如,在默认设置下,软件从当前解开始,最多执行 3000 次迭代计算,来 获取新的解算值,参数 C1 和 Kc 在当前解算值的 1/1.5 和 1.5 范围内变化,参数 R2、C2、R3 和 C3 将在当前溶液的 1/3 和 3 范围内变化。

输入数据和参数后,单击"起始计算"开始曲线拟合。结果将显示在右下 角的窗口中,软件自动绘制计算结果并与实验数据进行比较。要注意的一个关 键值是"Error(%)",它给出了曲线拟合误差。

一旦获得满意的结果,单击"停止计算"停止曲线拟合。记录模型参数。 如果正在研究的超级电容器的原理图是打开的,可以通过单击"复制到元件" 将参数自动复制到原理图中。

3. 设计步骤

3.1. 超级电容器建模

下面通过一个具体的案例说明超级电容器建模的方法和过程。

以 Maxwell 公司 16V 58F 超级电容器 BMOD0058 - E016 - B0 为例。从制造厂 商数据手册中,可获得以下信息:

额定容量	58F		
额定电压	16V		
漏电流(25℃)	25mA		

表 2 超级电容器数据手册

对单个单元电容器进行了实验,充电电流为35A,将实验数据加载到超级 电容器模型工具中,输入其他参数后,出现如下图对话框。实验数据为红色,9 个选定点为绿色。

PSIM 模型介绍-超级电容器模型

	■ 超级电	容参数提取							X
	加载数据			起始计算	L 停	止计算	重绘		
数据Points			Vc_data	Vc_calculat	ed		_		
	点	t (s) Charging	Vc (V)	17.5					
	1	0	0.740448	12.5					
	2	8.538	6.48874	10					
1	3	25.614	15.9667	7.5					
		放电		5					
	4	t3	Vc3 - Vc1	2.5					
	5	353.86	14.4566	0					
	6	1051.37	13.8246	° L	11.	21.	21.	41-	
	7	2077.13	13.2116	U	IK	2K tim	ак e (s)	4K	эк
	8	3102.88	12.7378						
	9	4128.64	12.3075						Â
	┌ 输入参	数 ————							
Is (A) 额定电压 漏电电流									
	3	5 16	0.025						
		韦							
	n (计算	(值) 对应	对应						
	30	00 1.5	3.0						-
				, 复制到元	件		关闭		

图 4 实验数据加载图

单击"起始计算",软件开始拟合计算,不到一分钟,曲线拟合误差在 0.37%左右。停止计算,获取计算结果,如图 5中的红框中标示。

🏾 超级电	容参数提取			X			
加载	数据		起始计算				
数据Points			Vc_data Vc_calculated				
点	t (s)	Vc (V)	17.5				
	Charging	0.740449	15				
1	0	0.740446	12.5				
2	8.538	6.48874	10				
3	25.614	15.9667	7.5				
	放电		5				
4	t3	Vc3 - Vc1	25				
5	353.86	14.4566					
6	1051.37	13.8246					
7	2077.13	13.2116	0 1k 2k 3k 4k time (s)	5k			
8	3102.88	12.7378					
9	4128.64	12.3075	R4 = 640 Ohms 消耗时间 = 0 days, 00 hours, 00 min, 00 secs	•			
- 输入参 Is (A) 3 查找范I 30	数	漏电电流 0.025 对应 3.0	改进 2 Error(%) = 0.373453 R1 = 0.021155 / Ohms C1 = 48.7978 F Kv = 1.31331 F/V R2 = 24.1629 Ohms C2 = 2.31468 F R3 = 216.395 Ohms C3 = 7.49368 F R4 = 640 Ohms 消耗时间 = 0 days, 00 hours, 00 min, 00 secs	•			

图 5 实验数据拟合结果

通过超级电容模型工具的拟合计算,得到超级电容器模型参数 R1、C1、 Kv、R2、C2、R3、C3、R4,可复制到元件进行仿真验证。

3.2. 仿真分析与验证

在 PSIM 中建立了如下所示的测试电路,以验证所计算的超级电容模型参数 模型参数。

图 6 超级电容模型测试电路

将计算得到的超级电容器模型参数复制到元件中,运行仿真分析。

下图显示了仿真结果 Vc_simu (红色) 与实验结果 Vc_exp (蓝色) 的比较。 图 7 为长时间波形,图 8 为充电期和早期放电期的特写。

从仿真结果与实验结果的对比波形可以看出,仿真结果与实验结果吻合良好,通过 PSIM 超级电容器模型工具建立的超级电容器模型拟合精度很高,能够很好地满足用户需求。

4. 结论

PSIM 提供的超级电容器模型及建模工具,基于图形化界面,可以帮助用户 根据厂商数据手册和实验数据快速建立符合工程应用要求的模型,对可再生能 源领域的研究与应用具有重要意义。

5. 案例获取

如果您需要了解本案例更多信息,可以联系我们索取仿真报告或者现场讲解,联系方 式如下:

邮箱: infor@innodrivetech.com 网址: http://www.innodrivetech.com 官方微信公众号: Power_Simulation 更多资讯,敬请扫码进入:

