文档名称:	谐振 LLC 变换器的功率损耗	毛和效率计算	
文档编号:		文档版本:	v1.0
文档类别:	详细技术资料	密级:	公开

二零二叁年陆月

未经许可 请勿复制全部或者部分文档 ©新驱科技 版权所有

目录

1.	案例介	留.	•••	•••	•••	• • • •	•••	•••	•••	• • •	•••	•••	•••	••	•••	•••	•••	•••	••	•••	••	••	••	•••	••	•••	•••	3
2.	系统规	限格要	家	•••	• • •	• • • •	•••	•••	•••	•••	••	•••	•••	••	•••	•••	•••	•••	••	•••	••	••	••	••	••	•••	••	3
3.	设计步	骤.	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	••	•••	•••	•••	•••	••	•••	••	••	••	••	••	•••	••	3
	3.1.	设计	谐	辰元	件的	的最少	佳值	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	••	••	••	••	••	•••	••	4
	3. 2.	将M	OSF	ET 🕈	和二	极管	添加	加至	り器	件教	牧 捷	库	中.	••	•••		•••		•••	•••	••	••	••	••	••	•••	••	4
		3. 2.	1 米	₹ MC	SFE	T 添	加至	削器	件對	数携	民库	•••	•••	••	•••	•••	•••	•••	••	•••	••	••	••	•••	••	•••	••	5
		3. 2.	2 米	子二	极管	添力	미到	设省	备数	据	库中	Þ.	•••	••	•••	•••	•••	•••	••	•••	••	••	••	••	••	•••	•	12
4.	计算功	b 率损	耗	•••	• • • •		•••	•••	•••	•••	••	•••	•••	••	•••		•••		••	•••	••	••	••	••	••	•••	•	14
5.	结论.	• • • •	•••	•••	•••	• • • •	•••	•••	•••	•••	••	•••	•••	••	•••		•••		•••	•••	••	••	••	•••	••	•••	•	16
6.	案例初	取.	•••		•••		•••				••		•••	•••			•••				•••	••		••			•	16

1.案例介绍

近年来,谐振 LLC 谐振转换器由于其在宽负载线路范围内的软开关特性、更高的峰值效率和更低的 EMI 而备受关注。谐振 LLC 转换器还可以提供高功率密度,因为谐振元件可以被整合到磁体中,并且由于开关损耗和低 EMI 噪声可忽略,因此可以在更高的开关频率下工作。然而,谐振 LLC 变换器的优化设计和功率损耗计算是一项具有挑战性的任务。

PSIM 中的电源设计套件(PSDS)为谐振转换器的快速分析和优化提供了设计工具,具 有很高的准确度和精度,可以方便解决上述问题和设计挑战。PSIM 中的热耗模块可以帮助 我们利用制造商器件数据表中的信息快速计算半导体器件的功率损耗。

本文首先使用 PSDS 来设计包含理想开关器件的谐振 LLC 转换器。然后根据制造商的数据表,将理想的器件更换为热耗模块器件,以确定总功率损耗,包括导通损耗和开关损耗。

2.系统规格要求

本文案例选择的谐振 LLC 转换器具有以下规格:

- ➤ 额定电压=390V;最低电压=375V;最高电压=405V
- ▶ 额定电压=12V
- ▶ 额定功率=500W
- ▶ f_res=125 千赫

3.设计步骤

设计谐振 LLC 转换器并计算功率损耗包括以下几个步骤:

- 使用 PSDS 对选定的品质因数、磁比、频率范围,采用理想的开关器件进行谐振回路参数优化。
- 2) 使用热耗模块将选定的 MOSFET 和二极管器件添加到器件数据库中。
- 3) 使用热耗模块中的器件运行仿真,以确定转换器的功率损耗。

3.1.设计谐振元件的最佳值

在 PSIM 中,转到 Design Suites>>Power Supply Design Suite,然后选择 Full bridge Resonant LLC。打开文件后,将显示一个模板电路,如下所示。

图 1: 设计套件中解压后的全桥谐振 LLC 转换器模板

原理图屏幕左侧的参数面板允许用户输入设计规范,启动稳态解算器工具和设计曲线工具。电路左侧的参数文件存储谐振 LLC 转换器的计算参数值。

对于该应用,我们选择 Q_rated 为 0.4, K_ind 为 4,以实现在给定线路电压和负载条件下具有较窄频率变化范围的最佳 LLC 转换器设计。

Ls、Cs、Lm的谐振回路分量值计算如下:

- Ls= (Q_rated*Ro_rated_pri) / (2*pi*f_res) =154.92 uH
- Cs=1/ (2*pi*f_res*Q_rated*Ro_rated_pri) =10.463836 nF

▶ Lm=K_ind*Ls=619.72 uH

其中 Ro_rated_pri 是指初级侧的输出负载电阻的额定值。

基于增益要求,所需的相对频率变化因子(K_rel_freq)可以被确定为0.94至 1.06。然而,考虑到过载因素、输出二极管两端的电压降、变压器的电阻和开关的死区时 间,K_rel_freq选择为0.80至1.1。

3.2.将 MOSFET 和二极管添加到器件数据库中

热耗模块提供了一种快速估计半导体器件(二极管、IGBT、MOSFET、SiC和GaN)的导通和开关损耗以及电感器的磁芯和绕组损耗的方法。

PSIM 为用户提供了一个设备数据库编辑器,用于向数据库中添加新的热设备。

下面演示如何使用器件数据库编辑器将新的 MOSFET 或二极管器件添加到数据库中。 PSIM 文档教程 - 热耗模块中的 IGBT 和 MOSFET 损耗计算.pdf 中也描述了类似的过程。

3.2.1 将 MOSFET 添加到器件数据库

本文案例选择英飞凌的 MOSFET 器件 IPP60R099CP (650V, 31A) 作为初级侧开关,因为它具 有非常低的 Rds (导通) 和超低的栅极电荷。器件文件"IPP60R099CP.dev"可以在 PSIM 中 的"device\Infineon\MOSFET"文件夹中找到。

为了便于说明,我们将按照以下步骤将此器件添加到器件数据库文件"IPP60R099CP.dev"中:

1. 在 PSIM 中,转到实用程序>>器件数据库编辑器以启动编辑器。

选择器件>>新建 MOSFET。选择<新建器件文件>。在文件夹"device/Infineon/MOSFET"
 下创建器件文件"IPP60R099CP.dev",如下所示:

	com i sangerajanneg i sente i motori i m		jer plante a	NUMBER OF STREET
loganize • New folder				10. •
GAN Systems Dicle Dicle KBFT KMOSPET SIC,GaN MOSPET SIC,GaN MOSPET Dicl MagnaChip Mituubishi Electric Co. Semi Powerex Rohm Semiloun St Tanophom Vincetech Doc embedich	 Name BSC038N00NS.dev L4B123436.dev L9B60R190C6.dev L9B60R190C6.dev L9B60R090CP.dev L9B70R095CP.dev L9B70R095CP.dev<	Date modified M37/2023 11:58 AAM 8/11/2023 13:54 AAM 9/11/2023 13:53 AAM 9/11/2023 13:53 PM 4/18/2020 10:54 AAM 4/18/2020 10:59 AAM 4/18/2020 10:59 AAM 4/18/2020 10:59 AAM 5/10/2021 13:53 PM 4/18/2020 11:00 AAM	Type DEV File DEV File	504 39 K 39 K 39 K 39 K 39 K 39 K 35 K 35 K 35 K 35 K
Fix same PP00E090CP.ded				

3. 从数据表中输入基本信息,如零件号、包装和最大额定值,如下所示:

.

PcdEditor	- U X
File Device View Help	
D 🚅 🚔 🕂 🎼 🕼 🚥 🖬 🖷	
File Name C:Powersim/PSIM_2021a_Softkey/Device/Unfineon/UGBT/FS800R07 A C:Powersim/PSIM_2021a_Softkey/Device/Unfineon/UGBT/HGTG20N	Nanulacturer Infineon Part Number IPP60R099CP Radi and
C:\Powersim\PSIM_2021a_Softkey\Device\Infineon\MDSFET\BSC0; C:\Powersim\PSIM_2021a_Softkey\Device\Infineon\MDSFET\AB12 C:\Powersim\PSIM_2021a_Softkey\Device\Infineon\MDSFET\PB60	Discrete (n channel) Style P6-T0220
C:\Powersim\PSIM_2021a_Softkey\Device\Unincon\MDSFET\UPB60 C:\Powersim\PSIM_2021a_Softkey\Device\Unincon\MDSFET\UPP60 <	Absolute Maximum Ratings VDS,max (V): 650 ID,max (A): 31 Tj.max (eC): 150

4. 根据数据表(右下图)输入电气特性信息(左下图)。

		Test D	onditions:			Test Co	nditions:
RDS(on): 0	1.9	TJ:	25	Qg (nC):	60	VDS:	400
emperature 0.0	05	VGS:	10	Qgs (nC):	14	VGS:	10
Coefficient: 0.0	00	ID:	18	Qgd (nC):	20	ID:	18
VGS(th):	3	ID:	0.0012	Citt (pF)	2900	VDS:	100
gfs (5):	40	VDS:	20	Coss (pF)	130	VGS:	0
		ID:	50	Cree (pF);	10	Freq.	1
tr (no):	5	VDS:	10				
# (ns):	5	ID:	18	Note: All vol and resistant	tages are i ces in Ohr	in V, curren/ %	ts in A,
		RG:	3.3				

Infineon					PPGA	999CP
Parameter	Symbol	Conditions		Values		Unit
			min.	100-	-	1
Dynamic characteristics						
input capacitance	C	V ₁₀ =0 V, V ₁₀ =100 V,	1.0	2800		př.
Output capacitance	0	7×1 MHz	1.0	130		1
Effective output capacitance, energy related ¹⁰	C _{rist}	V	-	130	•]
Effective output capacitance, time related [®]	0.00	51.480 V		340		1
Turn-on delay time	August .			90		-
Rise time	λ.	V ₁₀ =400 V, V ₀₁ =10 V, J ₀ =10 A, R ₀ =0.0 D		5]
Turn-off delay time	Aure -			60		1
Fail time	h	1		5		1
Gate Charge Characteristics						
Gate to source charge	0.,.			- 14		=0
Gate to drain charge	0.41	V ₁₀ =400 V, I ₀ =18 A,		20		1
Gate charge total	٥,	Vorel to 10 V		60	80	1
Gate plateau voltage	V_{patter}	1	-	58		v
Reverse Diode						
Diode forward voltage	¥10	V ₀₂ =8 V, / ₂ =18 A, 7 ₂ =25 °0		0.8	12	v
Reverse receivery time	1		1.0	480		
Revene recovery charge	0.,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12		μĊ
Peak revene recevery surrent	l		1.0	70		Α.

5. 输入反并联二极管的电气特性,如下所示:

Vd vs. IF <u>Edit</u> trr (ns Qrr (uC	IF (A): 18 (i): 12 di/dt 100 (A/us): 12 25
---	--

6. 输入如下所示的热特性:

Thermal Characteristics —	Туре	Cauer 👻 No. of Stages	1 🕂
		Transistor	
	R1	0.5	
	C1		

接下来,我们将使用曲线捕获工具从数据表中导入反并联二极管的电气特性曲线。

首先,点击"Vd vs. IF"特性的编辑按钮。将显示曲线捕获工具的窗口。

单击 Add Curve (添加曲线),使用左上角的 Graph Wizard (图形向导)按钮,按照以下步骤捕获一个工作温度下的曲线:

1. 在屏幕上显示数据表中的"Vd vs. IF"特性图。单击截屏键(PrtSc)将屏幕复制到 剪贴板。

2. 单击图形向导的向前绿色箭头。剪贴板中的图像将被复制到对话框窗口中,如下所示:

3. 将图像正确地放置在窗口中,以使完整的图形处于完整视图中。单击前进箭头。通过左键单击图形的原点(左下角)来定义图形的边界,然后将光标移动到相对的角(右上角)并左键单击。右键单击可放大光标以便于放置。在此之后,一个蓝色框架将叠加在原始图形框架的顶部,如下所示:

4. 单击前进箭头。检查 x 轴和 y 轴的定义是否正确。默认情况下, x 轴为 IF, y 轴为 Vd。但如果数据表中的 x 轴是 Vd, y 轴是 IF。我们需要选中"交换 X/Y 轴"框以匹配数据 表。输入 X0=0, Xmax=2, Y0=0, Ymax=100。输入 25℃曲线的结温 T j=25。对话框窗口如下 所示:

 5.单击前进箭头。从原点开始,左键单击25℃曲线的以捕捉数据点。右键单击可放大 光标以便于放置。沿着曲线单击时,将绘制一条红色曲线,指示捕获的数据点。对话框窗 口如下所示。

6. 单击前进箭头,捕获过程将完成。Tj=25℃时捕获曲线的对话框窗口如下所示。

7. 单击"添加曲线"按钮添加新曲线。重复上述步骤以获取其他工作/结温的曲线。

下图 2 显示了将该 MOSFET 模型添加到器件文件"IPP60R099CP.dev"中后, PcdEditor 中的器件。反并联二极管在不同结温(25℃和150℃)下的电特性曲线如图 3 所示。

图 2: 带 MOSFET IPP60R099CP 的器件编辑器 图 3: MOSFET IPP60R099CP 的 IF 与 Vd 曲线

3.2.2 将二极管添加到器件数据库中

我们选择意法半导体的肖特基势垒整流器 STPS40L45C(45V, 20A)作为次级侧二极 管。

器件文件 "STPS40L45C. dev" 可以在 PSIM 中的 "device\ST\diode" 文件夹中找到。

将 STPS40L45C 的热信息添加到器件数据库的过程类似于 2.1 中所述的过程。下面的图 4 显示了将该二极管模型添加到器件文件 "STPS40L45C. dev"中后,器件编辑器中的热信 息。

反并联二极管在不同结温(25℃、75℃和125℃)下的电特性曲线被导入图 5 所示的 器件文件"STPS40L45C. dev"中。

Podialeor		- D X
File Device View Help		
3 # # + 19 10 m	51 M 2	
The Name Conference of VIRA, 2012 In , Southing Conference of VIRA, 2012 In , Southing Conference of VIRA, 2012 In , Southing Conference of VIRA, 2012 In, Southing Conference Conference of VIRA, 2012 In, Sou	Encort Samkort (2011) 519 500 and Encort Samkort (2011) 519 500 and Encort Samkort (2011) 519 500 Encort Samkort (2011) 519 500 Encort Samkort (2011) 519 500 Encort Statistical Samkort (2011) Encort Statistical Samkort (2011) Encort Statistical Samkort (2011) Encort Statistical Samkort (2011) Samkort (2011) 519 540 55 Samkort (2011) 519 55 Samkort	March2014F [1] Householmens
74 % below = 117682.8% = 117633.8% = 117633.8%	1944ap (Same Induton) 00 2 00 2 00 30 00 30	Terrel Caucebook

图 4: 包含二极管 STPS40L45C 的器件编辑器 图 5: 二极管 STPS40L45C 的 IF 与 Vd 图

我们现在可以选择新添加的 MOSFET 和二极管的热模型。

在 PSIM 中,选择元件>>电源>>热耗模块>>MOSFET(数据库)。

将单个的 MOSFET 元件放在原理图上。双击 MOSFET 元件打开属性对话框。单击

"Device"输入字段旁边的 Browser 按钮,然后选择器件"IPP60R099CP",如图 6 所示。

IOSFET (distabasis) : Q1		×	Search for Devi	ce					
srameters Color ACSPET (database)		Help	Select Field	ect Device type:	ICSPIET		-	_	
Name	Q1	Display				S CORR	vove Crite		Add Orberton
U eku of fourful for som	Developingation	19, 21	Field name						Operation
Aumper of Parakei Devices	1 2 								1
Prequency	1258-0.975	_	1						
VGG+ (upper level)	30								
YGG- (cover level)	0								
Rg_on (turn-on)	1.3	-	Match all (AND))		•			Search
Rg_off (turn-off)	1.3								
RDS(on) Calibration Factor	1	- F	Search Result				_		
ofs Calbration Factor	1	- c	Manufacturer	Part Number	Package	Vds,max	1d,mex	Tj.mex	Fie Path
Prood O Calibration Factor	1	- F	Infinean	85C028N06N5 TAR123456	Distr	60	132	125	C: Powersim/PSIM_2021a_Softke C: Powersim/PSIM_2021a_Softke
Ine O Calibration Earlor	1		Infinean	IP860R 190C6	Distr	650	12.8	150	C Powersin PSIM_2021a_Softke
Pan jų Caloradorinacion	*		Inforce	IPREOR/G70CPD7	Distrim	650	31	100	CiPowersin/PSIM 2021a Softke
Pcond_D Calbration Pactor	1		Dimes 1	184 1010E2	CIRCL.	- 507	73	1/5	C PUMPINE SIT AND AND
Psw_D Calbraton Factor	1	E I	Infinean	IRF38055	Decr	55	75	175	C: Powersin/PSIM_2021a_Softke
Jnitial Tj	90	- F	Infinean	IRF7380	Dual	80	3.6	150	C: Powersin (PSIM_2021a_Softher C: Research (PSIM_2021a_Softher
Initial Plass	0	- E	Infinean	IRFP 460	Diet?	500	20	150	C: Powersin PSIM_2021a_Softie
T) Flag	1	- r	¢	C. C	-	1.00	- 7		- in (many many - A)
Ploss Plag	1	I	1						1 1
Current Flag	1	- F					Ge	to devic	I OK Cancel
Voltage Flag	1	- r	-	-		- 4		0.50 ((V)

图 6:MOSFET "器件" 输入字段和路径选择器件 "IPP60R099CP"

类似地,选择元件>>电源>>热耗模块>>二极管(数据库)。将单个二极管元件放在原理 图上。双击二极管元件以打开属性对话框窗口。单击"Device"输入字段旁边的 Browser 按钮,然后选择器件"STPS40L45C",如图7所示。

ode (database) : D1			. Search for Devic	.e						
rarieters Color			Sele	ct Device type: DIODE		Ŧ				
iode (database)		Help	Select Field	•		Ŧ				
		Display								
Name	D1					Remove C	riberion	1	Idd Othering	
Device	STPS40L45C					Too Too Too S				_
Number of Parallel Devices	1		Field name					Oper	ation	_
Frequency	129K*1.06	I								
Pcond Calibration Factor	1									
Psw Calbration Factor	1									
hitial Tj	90		Match all (AND)		*			Se	arch	
Initial Plose	0									
Tj Flag	1		Search Result							
Place Flag	1	- n	Manufacturer	Part Number	Package	Wrm,max	If,max	Tj.mex	File Path	_
	-		Infineon	150EBU04	Discr	400	150	175	C: Powersim PSIM_202	218_5
Current Flag	1		Infineon	IDH05G65C5	Discr	650	5	125	C: Powersm PSIM_202	218_5
oltage Flag	1		Un semi	ISL94306032	Dept	600	30	1/5	C: PowersmyStM_202	238.2
	1.	_	Powerex	01210010	Diam.	600	000	150	C: Powersin PSDI_202	214.0
K and A			Samirron	SVM1200ML117TE4 DS	Discr	1300	2400	175	C: Powersin PSIM 202	214.5
Lei_i	req	(V)	Samilton	SOM 200M 112TE4 D6	Discr	1200	2400	175	C: Powersin IPSTM 202	21
(V)	f res	\sim	ST Microelec	STPS40L45C	Disor	45	20	125	C: Powersin/PSIM 202	215 1
∇			ST MICROBIC	ST1A2005	URSO	600	8	140	CIPONEISINPSIN_202	218 1
	K		ST Microelec	STTH60L06C	Dual (600	30	175	C: Powersin PSIM_202	218
		- 1	<							>

图 7: 二极管"器件"输入字段和路径选择器件"STPS40L45C"

图 8显示了带有 IPP60R099CP 和 STPS40L45C 热耗器件的改进后的谐振 LLC 转换器原理

图。

原理图文件 "Resonant LLC - 功率损耗计算.psmsch"可在本案例文件夹的"simu"子

文件夹中找到。

图 8: 包含 MOSFET IPP60R099CP 和二极管 STPS40L45C 的谐振 LLC 转换器示意图

4.计算功率损耗

用从 PSDS 获得的 Ls、Cs、Lm、Q_rated 和 K_ind 值仿真谐振 LLC 功率电路,并添加热 耗器件模型。图 9 显示了 MOSFET Q1 和二极管 D1 在额定输出电压(12V)和最小输入电压 (375V)下的仿真波形以及导通和开关损耗。

图 9: 最小输入电压 Vin_min 下的仿真波形

下面还说明了 MOSFET Q1 和二极管 D1 中的损耗的击穿值。

当 MOSFET 结温为 125. 52℃时,从 PSIM 仿真中获得了初级 MOSFET (Q1)的以下损耗结

果:

- ▶ 晶体管导通损耗 (W): 9.986
- ▶ 晶体管开关损耗 (W): 0.613
- ▶ 反并联二极管导通损耗 (W): 0.089
- ▶ 反并联二极管开关损耗 (W): 0
- ▶ 晶体管总损耗 (W): 10.689

当二极管结温为124.34℃时,PSIM 仿真得到的次级二极管(D1)的损耗结果如下:

- ➤ 二极管导通损耗 (W): 16.871
- ➤ 二极管开关损耗 (W): 0
- ➤ 二极管总损耗 (W): 16.871

二极管的开关损耗为零,因为在该电路中存在 ZCS 导通和 ZCS 关断,并且二极管没有 反向导通。

根据数据表,每个 MOSFET 器件的总功率损耗接近 10W,每个二极管器件的总功耗接近 16W, MOSFET 和二极管器件的最高结温均为 150℃。如果使用最大结温的 20%作为设计裕 度,并考虑环境温度为 40℃,我们可以确定 MOSFET 的散热片热阻(R_case_ambient_1) 约为 7.5oC/W,二次侧二极管的散热片热阻(R_case_ambient_2) 约为 3.5oC/W。如图 8 所 示。

在计算了开关损耗之后,我们可以计算转换器的效率。图 10 显示了转换器在输入线电压的三个不同值(Vin_min、Vin_rated 和 Vin_max)下的效率曲线,负载电流从 25%变化到 100%。

5. 结论

本教程展示了使用电源设计套件可以快速设计谐振 LLC 转换器。此外,使用 PSIM 中的 热耗模块,用户可以选择特定的开关器件,并轻松计算器件的损耗和结温以及整个转换器的 效率。

6. 案例获取

如果您需要了解本案例更多信息,可以联系我们索取仿真报告或者现场讲解。

联系方式如下:

邮箱: infor@innodrivetech.com

网址: http://www.innodrivetech.com

官方微信公众号: Power_Simulation

更多资讯,敬请扫码进入:

